The Importance of System Dynamic Modeling for Small Wind Turbines
Part 2: Pika T701 Case Study

Presented by:
Paul Migliore | AnemErgonics, LLC
303-868-7005

Analysis by:
Joshua Kaufman | Pika Energy
207-632-8040

Presented to:
Small Wind Conference 2016
Stevens Point, WI
FAST Simulations Aimed at Improving Pika T701 Dynamic Performance

➢ Extreme lateral deflections with unacceptable damping were observed.

➢ What configuration changes can be made to correct the situation?

Pika T701 with original tail.
Typical Wind Input Simulation

- One of several trials

![Graph showing wind speed over time](image-url)
Tower Top Deflection – Effect of Tower Damping Ratio

- Lower damping ratio exhibits much larger deflections.
- But who knows what the real damping ratio is?
Helpful Parameters to Examine

- Yaw moment, yaw error, tower-top deflection time histories.
- RMS deflection and yaw acceleration as influenced by geometry.
- Note, for example, yaw moment generated by the tail is more significant than the yaw inducing moment on the rotor shaft.
RMS Tower-Top Deflection and Yaw Error Effect of Tail Area

More tail area is needed.
RMS Tower-Top Deflection and Yaw Error
Effect of Tail Arm

More tail arm is needed.
RMS Tower-Top Deflection
Effect of “Tail Volume”

- “Tail Volume” is the product of tail area and tail arm.
- Analogous to directional stability in aircraft design.
Moving C.G. downwind causes a significant decrease in tower top motion.
Trial Run

- Add tail area.
- Additional improvements may result from C.G. movement and adjustment of operational controls.
Results and Conclusions

- Using FAST modeling, a parametric variation of configuration variables pointed the way to a new tail and other modifications of the Pika Energy T701.

- The dynamic performance of the modified turbine is far superior to the original.

- In spite of the limitations of FAST it has proven to be a useful design tool.

- More work is necessary to verify the reliability of FAST for such purposes.